New EARL PET/CT Performance Standards for Oncological PET/CT Studies

Ronald Boellaard
Terez Sera
Andres Kaalep

EANM Research Ltd (EARL)

Joint Symposium - EANM/EARL
EANM’18 Düsseldorf: October 13 - 17, 2018
EANM Disclosure Statement

1) I or one of my co-authors hold a position as an employee, consultant, assessor or advisor for a pharmaceutical, device or biotechnology company. **If yes, please specify name/position/company:**
 Ronald Boellaard

2) I or one of my co-authors receive support from a pharmaceutical, device or biotechnology company. **If yes, please specify name/position/company/which project and whether support is in kind or monetary:**
 Terez Sera received honoraria for data interpretation from EARL.

3) I or one of my co-authors hold property rights/patents for (radio)pharmaceuticals, medical devices or medical consulting firms. **If yes, please specify name/position/company:**
 Nothing to disclose

4) I or one of my co-authors have written articles for (radio)pharmaceutical, medical device, biotechnology or consulting companies during the last 5 years. **If yes, please specify name/position/company/article/ journal and co-authors:**
 Nothing to disclose
Overview

• Brain standardisation

• 89Zr accreditation

• New EARL standards (main part)
Feasibility of a brain PET harmonization program for state of the art PET/CT systems

Ronald Boellaard1,2, Sandeep Golla1, Andres Kaleep3, Maqsood Yaqub1, Terez Sera4, Sjoerd Rijnsdorp5, Rosalie Kogan2, Nico Leenders2, Adriaan A. Lammertsma1

1. VU University Medical Centre, Amsterdam, The Netherlands
2. University Medical Centre Groningen, Groningen, The Netherlands
3. North Estonia Medical Centre Foundation, Tallinn, Republic of Estonia
4. University of Szeged, Szeged, Hungary
5. Catharina Hospital, Eindhoven, The Netherlands
Aim: to explore the feasibility of developing a standard for harmonizing performance of FDG PET brain studies on state of the art PET/CT systems

- 11 different state of the art PET/CT systems from 3 vendors
- 30 min Hofman brain phantom PET/CT scans – up to 10 different reconstructions

Variation in image quality and quantitative accuracy across systems:

Non PSF reconstructions

PSF reconstructions

Harmonized performance (shaded) = at least one reconstruction per system can comply

Conclusion: This pilot study shows that harmonization of PET/CT system performance for FDG brain studies seems feasible within +/-10% (non PSF) and +/- 5% (PSF).
89Zr PET accreditation

89Zr – isotope used for antibody labelling

Feasibility of PET/CT system performance harmonisation for quantitative multicentre 89Zr studies

Andres Kaalep1, Marc Huisman2, Terez Sera3, Danielle Vugts2, Ronald Boellaard2,4, on behalf of EARL5, EATRIS6 and the TRISTAN Consortium (#IB4SD-116106)7
89Zr PET accreditation

4 out of 8 systems show a calibration error of more than 10%
^{89}Zr PET accreditation

^{89}Zr recovery curves are comparable to those seen with FDG (apart from the calibration error)
Procedure to obtain 89Zr accreditation:

1. Obtain the 18F accreditation using both phantom QC
 - Calibration using uniform cylinder
 - Image Quality QC

2. 89Zr accreditation is performed on top of 18F
 - Calibration QC using uniform cylinder (with 89Zr solution) only

3. Same calibration criteria as for 18F
 - $< 10\%$ deviation
• Brain standardisation

• 89Zr accreditation

• New EARL standards (main part)
Introduction

• PET image reconstruction with point spread function (PSF) modelling aims to,
 – Improve spatial resolution.

• PSF images are being widely used for,
 – Visual assessment.
 – SUV quantification.

• However, prior studies have shown SUV quantification from PSF images is not directly comparable to conventional non-PSF images.
PSF reconstruction

• Users like to use PSF for its improved image quality

• At present about 50% of EARL and of installed systems have PSF reconstructions

• Therefore, a good time to explore update of EARL to allow for PSF reconstructions
Resolution modeling

Courtesy of J. Nuyts
Iterative reconstruction with resolution modeling

image space → projection space

Current estimate

Projection

+ SMOOTH

Error image

Backprojection

+ SMOOTH

Estimated projection

Measured projection

Compare (e.g. - or /)

Error projection
+40%

Courtesy of D. Van Assema, ErasmusMC
New technologies

• Use of resolution modeling during reconstruction
• TOF and digital PET (improvement of TOF by factor 2)
• Use of smaller voxel sizes

• Improved image spatial resolution
• Better lesion detectability
• Different (increased) quantitative results!
SUVmax liver ~unaffected by PSF (=DS reference tissue)

\[
\text{SUV}_{\text{max}} \text{ liver} = 4.1 \quad 4.0 \quad -2.5\%
\]

\[
\text{SUV}_{\text{max}} \text{ target} = 9.9 \quad 13.8 \quad +39\%
\]
However…..edge artifacts

• Image reconstruction with PSF is associated with edge artifacts (Politte & Snyder 1988)
Feasibility of state of the art PET/CT system performance harmonisation

Andres Kaalep1, Terez Sera2,8, Sjoerd Rijnsdorp3, Maqsood Yaqub4, Anne Talsma5, Martin A. Lodge6, Ronald Boellaard4,7,8

1. North Estonia Medical Centre Foundation, Tallinn, Republic of Estonia
2. University of Szeged, Szeged, Hungary
3. Catharina Hospital, Eindhoven, The Netherlands
4. VU University Medical Center, Amsterdam, The Netherlands
5. Martini Hospital, Groningen, Netherlands
6. Johns Hopkins University, Baltimore, MD, 21287, USA.
7. University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
8. On behalf of EANM Research Limited (EARL), Vienna, Austria
Objective

• To investigate the feasibility of quantitative harmonisation among state-of-the-art PET/CT scanners from major manufacturers

• To produce prototype harmonising criteria for an update of EANM EARL accreditation program
Methods

• Phantom experiments using NEMA image quality phantom
 – Hot spheres of 10, 13, 17, 22, 28, 37 mm diameter
 – Sphere-to-background ratio of 10:1
 – SUVmean, SUVmax & SUVpeak

• 2-phase study
 – 1. Determining harmonising reconstruction settings (development dataset)
 – 2. Validating harmonising capabilities on additional systems (test dataset)
Methods

Phase 1 - Selecting harmonising reconstruction modes

- 15x3 initial datasets from:
 - Siemens Biograph mCT
 - Siemens Biograph mCT Flow
 - GE Discovery 710
 - Philips Ingenuity TF 128

Variables:
- voxel size
- post filter
- acquisition duration
- Flow mode / Q.Clear

Phase 2 - Validation of harmonising reconstruction modes

- 23 datasets from 18 PET/CT scanners:
 - Siemens Biograph mCT
 - Siemens Biograph mCT Flow
 - GE Discovery 710
 - GE Discovery IQ
 - GE Discovery MI
 - Philips Ingenuity
 - Philips Vereos

- Independent scans by the volunteer sites
Results - Initial reconstruction modes

- Initially large inter- and intrasystem variability
- RC curves outside current EARL specifications
- SUVpeak shows excellent harmonising capacity, but low RCs for small spheres
Results - Harmonising reconstruction modes

- Prototype EARL specifications increase overall RC ~25%
- Reconstruction setting - stable in reduced count rate conditions
- Curves become more „flat“
Results - Validation results

- Prospective independent test data from 23 imaging sites
- Majority of results fit within prototype EARL specifications
Discussion

• New reconstruction technologies i.e PSF can increase variability among scanners not subjected to harmonisation

• In PSF enabled reconstruction, impact of sphere-to-background ratio on the quantitative results should be further investigated

• Prototype EARL specifications could merge often separate „for quantification“ and „for lesion detection“ reconstructions into one

• SUVmax positive bias of about 10-25% expected for objects >17 mm diameter

• SUVpeak could be used as a robust quantitative metric
 – Low sensitivity to noise
 – Low sensitivity to reconstruction parameters
 – Similar recoveries with current EARL specs of SUVmax
 – Least sensitive to sphere-to-background ratio and Gibbs artefacts
• M.A. Lodge & R. Boellaard have demonstrated that:

PSF & SUV

• SUV\textsubscript{peak} defined as a 1 mL spherical VOI, positioned to maximize mean.
 - Incorporates slightly greater volume averaging than SUV\textsubscript{max}.

• SUV\textsubscript{peak} substantially reduces bias over a range of sphere-to-background ratios.
Conclusion

• Harmonisation of state of the art PET/CT systems is feasible
 – Results can further improve with adjustment of reconstruction parameters

• Prototype EARL specifications
 – ~25% increased contrast recoveries for SUVmean and SUVmax, effect being larger in smaller (≤ 17 mm) spheres
 – Stable RC curved in low statistics scenarios (≤ 2 min/bed position)
 – SUVpeak is now added to the standard
We thank the contributions of:

- University Clinic for Nuclear Medicine and Endocrinology, Salzburg, Austria
- VU University Medical Centre, Amsterdam, The Netherlands
- GIE Humanitep, Lille, France
- University Hospital of Cologne, Cologne, Germany
- Ghent University Hospital, Ghent, Belgium
- Zentralklinik Bad Berka, Bad Berka, Germany
- University Medical Centre Utrecht, Utrecht, The Netherlands
- Centre Antoine Lacassagne, Nice, France
- VieCuri Medical Centre, Venlo, The Netherlands
- University Hospital Magdeburg, Magdeburg, Germany
- Cancer Institute Nantes-Atlantiques, St. Herblain, France
- Groene Hart Ziekenhuis, Gouda, The Netherlands
- University Hospital of Navarra, Pamplona, Spain
- University Hospital Antwerp, Edegem, Belgium
- Heinrich-Heine University Hospital, Düsseldorf, Germany
- University Hospital Brussels, Jette, Belgium
- Bispebjerg Hospital, Copenhagen, Denmark
- St. Vincent's Hospital PET - CT Centre, Linz, Austria
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
- Uppsala University Hospital, Uppsala, Sweden.
EARL website http://earl.eanm.org
Introduction of new standard:

1. Formally introduced 1-1-2019
2. “EARL2” on top of “EARL1”
3. In case you opt for EARL2, then EARL2 and EARL1 recons will be both required
4. Currently clinical translation of EARL2 SUVs to EARL1 SUVs are explored:
 • A filter is identified to convert EARL2 to EARL1
5. Foreseen transition phase of several (2?) years:
 • Untill less than 10% of system do NOT have PSF recons
 • To allow to run out current studies
Overview

• Brain standardisation (WIP)

• 89Zr accreditation
 – start per 1-1-2019

• New EARL standards
 – start per 1-1-2019
Current EARL center of excellence network

<table>
<thead>
<tr>
<th>Country</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRANCE</td>
<td>43</td>
</tr>
<tr>
<td>THE NETHERLANDS</td>
<td>39</td>
</tr>
<tr>
<td>GERMANY</td>
<td>23</td>
</tr>
<tr>
<td>BELGIUM</td>
<td>18</td>
</tr>
<tr>
<td>SPAIN</td>
<td>18</td>
</tr>
<tr>
<td>ITALY</td>
<td>15</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>9</td>
</tr>
<tr>
<td>BRAZIL</td>
<td>6</td>
</tr>
<tr>
<td>DENMARK</td>
<td>6</td>
</tr>
<tr>
<td>NORWAY</td>
<td>6</td>
</tr>
<tr>
<td>UNITED STATES</td>
<td>6</td>
</tr>
<tr>
<td>AUSTRIA</td>
<td>4</td>
</tr>
<tr>
<td>HUNGARY</td>
<td>4</td>
</tr>
<tr>
<td>SWITZERLAND</td>
<td>4</td>
</tr>
<tr>
<td>ISRAEL</td>
<td>3</td>
</tr>
<tr>
<td>KUWAIT</td>
<td>3</td>
</tr>
<tr>
<td>PORTUGAL</td>
<td>3</td>
</tr>
<tr>
<td>SWEDEN</td>
<td>3</td>
</tr>
<tr>
<td>VIET NAM</td>
<td>3</td>
</tr>
<tr>
<td>ARGENTINA</td>
<td>2</td>
</tr>
<tr>
<td>CANADA</td>
<td>2</td>
</tr>
<tr>
<td>CZECH REPUBLIC</td>
<td>2</td>
</tr>
<tr>
<td>FINLAND</td>
<td>2</td>
</tr>
<tr>
<td>ROMANIA</td>
<td>2</td>
</tr>
<tr>
<td>AZERBAIJAN</td>
<td>1</td>
</tr>
<tr>
<td>ESTONIA</td>
<td>1</td>
</tr>
<tr>
<td>INDIA</td>
<td>1</td>
</tr>
<tr>
<td>JORDAN</td>
<td>1</td>
</tr>
<tr>
<td>PAKISTAN</td>
<td>1</td>
</tr>
<tr>
<td>SAUDI ARABIA</td>
<td>1</td>
</tr>
<tr>
<td>SLOVAKIA</td>
<td>1</td>
</tr>
<tr>
<td>SOUTH AFRICA</td>
<td>1</td>
</tr>
<tr>
<td>TURKEY</td>
<td>1</td>
</tr>
<tr>
<td>URUGUAY</td>
<td>1</td>
</tr>
</tbody>
</table>

Europe: 87%
Americas: 7%
Other: 6%