No association between striatal dopamine transporter binding and body mass index: A multi-center European study in healthy volunteers

Elsmarieke van de Giessen a,⁎, Swen Hesse b,c, Matthan W.A. Caan d, Franziska Zientek b,c, John C. Dickson e, Livia Tossici-Bolt f, Terez Sera g, Susanne Asenbaum h, Renaud Guignard l, Umit O. Akdemir i, Gitte M. Knudsen k, Flavio Nobili l, Marco Pagani m,n, Thierry Vander Borght o, Koen Van Laere p, Andrea Varrone q, Klaus Tatsch r,s, Jan Booj a, Osama Sabri b,c

a Department of Nuclear Medicine, Academic Medical Center University of Amsterdam, Amsterdam, The Netherlands
b Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
c Leipzig University Medical Center, Integrated Research and Treatment Center (IFB) AdiposityDiseases, Germany
d Department of Radiology, Academic Medical Center University of Amsterdam, Amsterdam, The Netherlands
e Institute of Nuclear Medicine, University College London Hospital, London, UK
f Department of Medical Physics and Bioengineering, Southampton University Hospitals NHS Trust, Southampton, UK
g University of Szeged, Department of Nuclear Medicine and Euromedic Szeged, Szeged, Hungary
h Department of Nuclear Medicine, Medical University of Vienna, Austria
i Nuclear Medicine Department, Centre Antoine Lacassagne, University of Nice-Sophia Antipolis, Nice, France
j Department of Nuclear Medicine, Gazi University, Faculty of Medicine, Ankara, Turkey
k Department of Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
l Institute of Cognitive Sciences and Technologies, CNR, Rome & Padua, Italy
m Nuclear Medicine Division, Université Catholique de Louvain, Mont-Godinne Medical Center, Yvoir, Belgium
n Nuclear Medicine, University Hospitals Leuven, Katholieke Universiteit Leuven, Belgium
o Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
p Department of Nuclear Medicine, University of Munich, Munich, Germany
q Institute of Nuclear Medicine, University Hospitals Leuven, Katholieke Universiteit Leuven, Belgium
r Institute of Nuclear Medicine, University College London Hospital, London, UK
s Department of Medical Physics and Bioengineering, Southampton University Hospitals NHS Trust, Southampton, UK

t A R T I C L E I N F O

Article history:
Accepted 2 September 2012
Available online 13 September 2012

Keywords:
Dopamine transporter
Striatum
Body mass index
Obesity
SPECT
[123]FP-CIT

A B S T R A C T

Introduction: Dopamine is one among several neurotransmitters that regulate food intake and overeating. Thus, it has been linked to the pathophysiology of obesity and high body mass index (BMI). Striatal dopamine D2 receptor availability is lower in obesity and there are indications that striatal dopamine transporter (DAT) availability is also decreased. In this study, we tested whether BMI and striatal DAT availability are associated.

Methods: The study included 123 healthy individuals from a large European multi-center database. They had a BMI range of 18.2–41.1 kg/m² and were scanned using [123]FP-CIT SPECT imaging. Scans were analyzed with both region-of-interest and voxel-based analysis to determine the binding potential for DAT availability in the caudate nucleus and putamen. A direct relation between BMI and DAT availability was assessed and groups with high and low BMI were compared for DAT availability.

Results: No association between BMI and striatal DAT availability was found.

Conclusion: The lack of an association between BMI and striatal DAT availability suggests that the regulation of striatal synaptic dopamine levels by DAT plays no or a limited role in the pathophysiology of overweight and obesity.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Overweight and obesity are an increasing health problem worldwide and are defined as a body mass index (BMI) of 25–30 and > 30 kg/m², respectively. Overeating of highly palatable and caloric foods is thought to play a major role in the overweight and obesity epidemic (Davis et al., 2004). There is a large body of evidence that suggests that dopamine is one of the neurotransmitters that is involved in the regulation of food intake and overeating (Ravussin and Bogardus, 2000). Food is able to induce a dopamine release in the nucleus accumbens in animals (Bassareo and Di Chiara, 1999) and in the striatum in humans (Small et al., 2003). The ability of